



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



## **European Technical Assessment**

ETA-16/0868 of 20 February 2023

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

PFEIFER anchor bolt PGS/G1-K

Cast-in anchor bolt

Pfeifer Seil- und Hebetechnik GmbH Dr.-Karl-Lenz-Str. 66 87700 Memmingen DEUTSCHLAND

Production Plants A/B/C

14 pages including 3 annexes which form an integral part of this assessment

EAD 330924-01-0601, Edition 07/2022

ETA-16/0868 issued on 28 May 2020



#### European Technical Assessment ETA-16/0868 English translation prepared by DIBt

Page 2 of 14 | 20 February 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



## European Technical Assessment ETA-16/0868

Page 3 of 14 | 20 February 2023

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The PFEIFER anchor bolt PGS/G1-K consists of ribbed reinforcing steel of the diameters 16, 18, 20, 22, 25, 28, 32, and 40 mm, two hexagon nuts and two washers. One of the ends of the bolt is provided with an anchor head and the other end with a thread of the sizes M16, M20, M24, M27, M30, M36 and M39.

The anchor bolt is imbedded in concrete up to the threaded length.

The product description is given in Annex A.

### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                             | Performance         |
|----------------------------------------------------------------------|---------------------|
| Characteristic resistance under static and quasi-static tension load | See Annex B2 and C1 |
| Characteristic resistance under static and quasi-static shear load   | See Annex C2        |
| Combined tension and shear under static and quasistatic load         | See Annex C2        |
| Displacement under static and quasi-static tension or shear load     | See Annex C3        |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance             |  |  |  |  |  |
|--------------------------|-------------------------|--|--|--|--|--|
| Reaction to fire         | Class A1                |  |  |  |  |  |
| Resistance to fire       | No performance assessed |  |  |  |  |  |

## Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

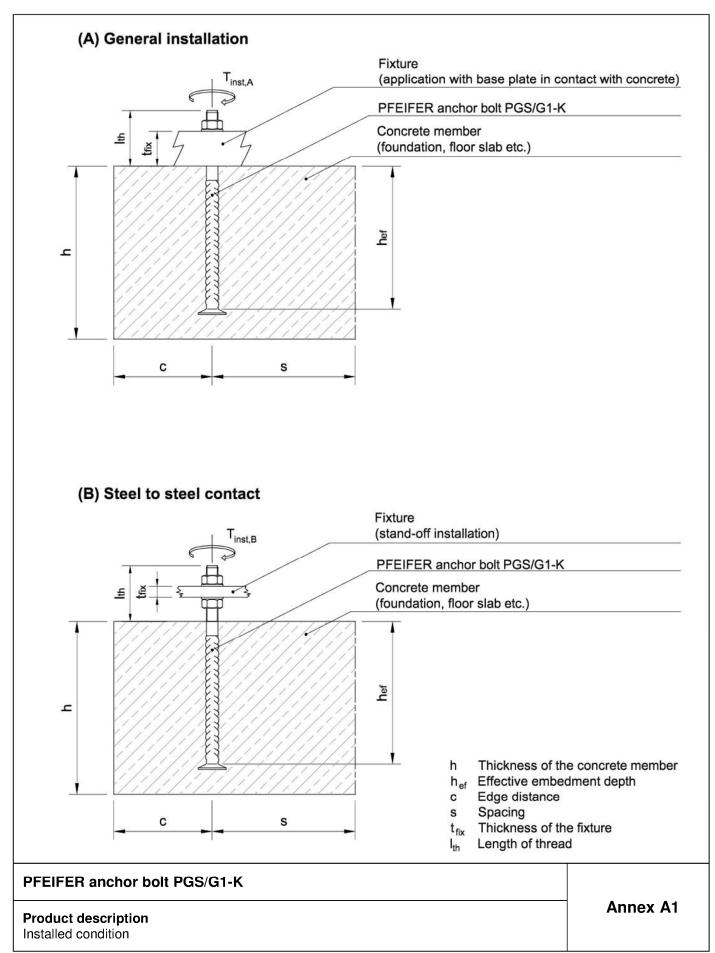
In accordance with EAD No. 330924-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1



#### European Technical Assessment ETA-16/0868 English translation prepared by DIBt

Page 4 of 14 | 20 February 2023


| 5 | Technical details necessary for the implementation of the AVCP system, as provided for |
|---|----------------------------------------------------------------------------------------|
|   | in the applicable EAD                                                                  |

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 February 2023 by Deutsches Institut für Bautechnik

LBD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Müller







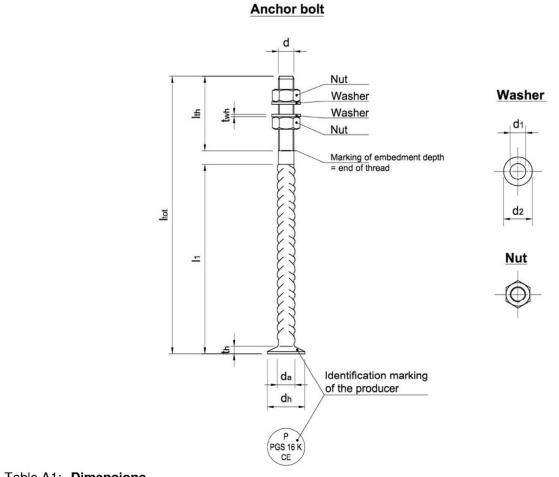



Table A1: Dimensions

| Component |                        |                        | Α    |                 | Nut            |                        |                    |                |      |                 |     |
|-----------|------------------------|------------------------|------|-----------------|----------------|------------------------|--------------------|----------------|------|-----------------|-----|
| DCC/C1 K  | da                     | <b>d</b> h             | d    | I <sub>th</sub> | t <sub>h</sub> | $I_{\mathrm{tot,min}}$ | I <sub>1,min</sub> | d <sub>2</sub> | d₁   | t <sub>wh</sub> | 1)  |
| PGS/G1-K  | [mm]                   | [mm]                   | [mm] | [mm]            | [mm]           | [mm]                   | [mm]               | [mm]           | [mm] | [mm]            | [-] |
| 16        | 16<br>18 <sup>2)</sup> | 38<br>39 <sup>2)</sup> | 16   | 100             | 10             | 230                    | 122                | 45             | 18   | 7               | M16 |
| 20        | 20<br>22 <sup>2)</sup> | 46<br>47 <sup>2)</sup> | 20   | 110             | 12             | 290                    | 170                | 45             | 22   | 6               | M20 |
| 24        | 25                     | 55                     | 24   | 120             | 13             | 350                    | 218                | 55             | 26   | 6               | M24 |
| 27        | 28                     | 63                     | 27   | 130             | 14             | 400                    | 258                | 60             | 29   | 8               | M27 |
| 30        | 32                     | 70                     | 30   | 140             | 15             | 440                    | 296                | 65             | 32   | 8               | M30 |
| 36        | 40                     | 80                     | 36   | 170             | 18             | 570                    | 384                | 75             | 38   | 8               | M36 |
| 39        | 40                     | 80                     | 39   | 170             | 18             | 620                    | 434                | 75             | 41   | 8               | M39 |

Dimensions according to EN ISO 4032:2012

Design variant with a reinforcement diameter of 18 or 22 mm

| PFEIFER anchor bolt PGS/G1-K               |          |
|--------------------------------------------|----------|
| Product description Components, dimensions | Annex A2 |

8.06.01-202/21 Z99224.22



#### Table A2: Specifications, materials

| Anchor bolt | Reinforcement steel rebar B500B/B500C (heat treated from the heat of rolling) according to EN 1992-1-1:2004 + AC:2010, Annex C |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| Washer      | S355JR / J0 / J2 acc. to EN 10025-2:2019                                                                                       |
| Hex nut     | Hexagonal nut acc. to EN ISO 4032:2012<br>Strength class 8 acc. to EN ISO 898-2:2012                                           |

PFEIFER anchor bolt PGS/G1-K

Product description
Materials

Annex A3



#### Specifications of intended use

#### Anchorages subject to:

Static and quasi-static tension, shear or combination of tension and shear

#### **Base material**

- Reinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C90/105
- Cracked or uncracked concrete

#### **Use conditions (Environmental conditions)**

- Anchor bars made of steel or ribbed reinforcing steel, washer and hexagonal nut are made of steel: Anchor bolts for use in structures subject to dry internal conditions.
- Anchor bars made of steel or ribbed reinforcing steel, washer and hexagonal nut are made of steel with concrete cover according to EN 1992-1-1:2004 + AC:2010
   Anchor bolts for use in structures subject to appropriate exposition relating to the concrete cover.

#### Design

- Anchor bolts are designed under the responsibility of an engineer experienced in anchorage and concrete structures.
- Verifiable calculation notes and drawings are prepared taking into account the loads to be anchored. The
  position of the anchor bars is indicated on the design drawings (e.g. position of the anchor bars relative to
  reinforcement or to support). The design drawings shall indicate the position of the anchorages, including the
  reinforcement required for anchoring.
- For static and quasi-static loading the anchor bolts are designed in accordance with EN 1992-4:2018.
- The occurring splitting forces are resisted by the reinforcement. The required cross section of the minimum reinforcement is determined according to EN 1992-4:2018, Section 7.2.1.7.

| PFEIFER anchor bolt PGS/G1-K   |          |
|--------------------------------|----------|
| Intended use<br>Specifications | Annex B1 |



#### Installation

- The installation of anchor bolts is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site
- Use of the product only as supplied by the manufacturer without any manipulation or exchanging of components
- Installation in accordance with the manufacturers product installation instructions given in Annex B3 and Annex B4
- The anchor bolts are fixed to the formwork such that no movement of the product will occur during the time of laying the reinforcement and of placing and compacting the concrete
- The anchor bolts are embedded in concrete up to the marking of embedmend depth
- The concrete under the anchor bar head is properly compacted
- The maximum installation torque according to Table B1 must not be exceeded

Table B1: Installation parameters

| Anchor bolt PGS/G1-K                              |                     |      | 16                                                                    | 20    | 24    | 27    | 30    | 36    | 39    |  |
|---------------------------------------------------|---------------------|------|-----------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| Effective embedment depth                         | h <sub>ef</sub>     | [mm] | h <sub>ef</sub> = l <sub>tot</sub> - l <sub>th</sub> - t <sub>h</sub> |       |       |       |       |       |       |  |
| Minimum effective embedment depth                 | h <sub>ef,min</sub> | [mm] | 120                                                                   | 168   | 217   | 256   | 285   | 382   | 432   |  |
| Minimum spacing                                   | Smin                | [mm] | 80                                                                    | 100   | 100   | 120   | 130   | 150   | 150   |  |
| Minimum edge distance                             | Cmin                | [mm] | 50                                                                    | 70    | 70    | 90    | 100   | 130   | 130   |  |
| Thread length                                     | I <sub>th</sub>     | [mm] | 100                                                                   | 110   | 120   | 130   | 140   | 170   | 170   |  |
| Minimum thickness of concrete member              | h <sub>min</sub>    | [mm] | $h_{min} = h_{ef} + t_h + c_{nom}$ 1)                                 |       |       |       |       |       |       |  |
| Max. installation torque (General installation)   | T <sub>inst,g</sub> | [Nm] | ≤ 15                                                                  | ≤ 35  | ≤ 55  | ≤ 80  | ≤ 110 | ≤ 190 | ≤ 240 |  |
| Max. installation torque (Steel to steel contact) | T <sub>inst,s</sub> | [Nm] | ≤ 95                                                                  | ≤ 185 | ≤ 325 | ≤ 475 | ≤ 645 | ≤1130 | ≤1460 |  |

<sup>1)</sup> Concrete cover acc. to EN 1992-1-1:2004 + AC:2010

PFEIFER anchor bolt PGS/G1-K

Intended use
Specifications, installation parameters

Annex B2



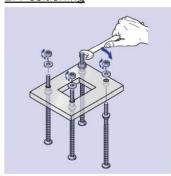
#### Installation instructions

#### 1. Components



Anchor bolt PGS/G1-K, consisting of:

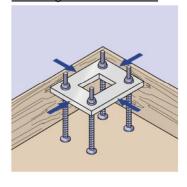
1. Anchor bolt (hot forged) with external thread, surface untreated


2. For **general installation**: 1x hexagon nut, surface untreated

1x special washer, surface untreated

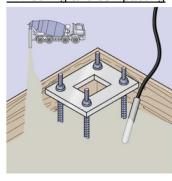
For **steel to steel contact**: 2x hexagon nut, surface untreated

2x special washer, surface untreated


#### 2. Positioning



Depending on the further usage anchor bolts have to be fixed at the formwork precisely:


- 1. Prepare suitable template of steel or wood
- → Check location of anchors bolts!
- 2. Fix anchor bolts at template by using nuts and washers
- 3. Verify template with anchor bolts finally

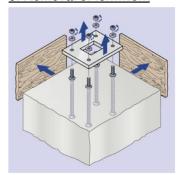
#### 3. Fixing at the formwork



- 1. Position template with anchor bolts at formwork
  - → Mind the correct embedment depth (end of thread)!
- 2. Fix template with anchor bolts at formwork
  - → Mind exact leveling!

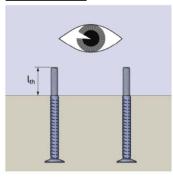
#### 4. Pouring and compacting




- 1. Fill in concrete carefully, mind fixed anchors!
- 2. Compact concrete properly, avoid contact between vibrating device and anchor bolts
  - → Don't move or damage anchor bolts by force!

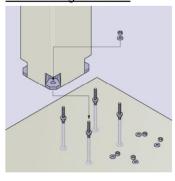
# PFEIFER anchor bolt PGS/G1-K Intended use Installation instructions Annex B3




#### Installation instructions

#### 5. Removal of formwork



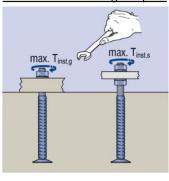

- 1. Remove formwork and accessories
- 2. Remove upper nuts and washers
- 3. Remove template
- 4. Remove lower nuts and washers

#### 6. Verification



- 1. Check threads of anchor bolts regarding contamination Clean them if necessary!
- 2. Check the protrusion of anchor bolts using the length of the thread  $l_{\text{th}}$  according to Annex A2
- 3. Check location of anchor bolts according to specifications

#### 7. Mounting of fixture




- 1. Ensure, that concrete has reached its designed strength
- 2. Check nuts and special washers regarding contamination Clean them if necessary!
- 3. Mount fixture
  - → Consider maximum installation torques given below!
  - → Note additional information regarding the fixture!

**General installation:** Fixture with direct contact to the concrete

Steel to steel contact: Distance between fixture and surface of concrete

#### 8. Maximum setting torques



## Maximum installation torques T<sub>inst</sub> for PFEIFER anchor bolts PGS/G1-K

| Type of installation                          | <b>16</b> [Nm] | <b>20</b> [Nm] | <b>24</b> [Nm] | <b>27</b> [Nm] | <b>30</b> [Nm] | <b>36</b> [Nm] | <b>39</b> [Nm] |
|-----------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| A) General T <sub>inst,g</sub>                | ≤ 15           | ≤ 35           | ≤ 55           | ≤ 80           | ≤ 110          | ≤ 190          | ≤ 240          |
| B) Steel to steel contact T <sub>inst,s</sub> | ≤ 95           | ≤ 185          | ≤ 325          | ≤ 475          | ≤ 645          | ≤ 1130         | ≤ 1460         |

## PFEIFER anchor bolt PGS/G1-K

Annex B4

Intended use Installation instructions



Table C1: Characteristic resistances under tension load

| Anchor bolt PC                                                                | SS/G1-K                |          | 16                  | 20    | 24                | 27                                   | 30               | 36    | 39    |  |  |  |
|-------------------------------------------------------------------------------|------------------------|----------|---------------------|-------|-------------------|--------------------------------------|------------------|-------|-------|--|--|--|
| Steel failure                                                                 |                        |          |                     |       |                   |                                      |                  | -     |       |  |  |  |
| Characteristic resistance                                                     | N <sub>Rk,s</sub>      | [kN]     | 86,4                | 134,8 | 194,2             | 252,5                                | 308,6            | 449,4 | 536,8 |  |  |  |
| Partial factor                                                                | γMs <sup>1)</sup>      | [-]      |                     |       | •                 | 1,4                                  |                  | •     | •     |  |  |  |
| Pull-out failure                                                              |                        | -        |                     |       |                   |                                      |                  |       |       |  |  |  |
| Characteristic Resistance in uncracked concrete C20/25                        | $N_{Rk,p}$             | [kN]     | 195,9               | 283,0 | 395,8             | 525,3                                | 639,3            | 791,7 | 791,7 |  |  |  |
| Characteristic Resistance in cracked concrete C20/25                          | N <sub>Rk,p</sub>      | [kN]     | 140,0               | 202,2 | 282,7             | 375,2                                | 456,6            | 565,5 | 565,5 |  |  |  |
|                                                                               |                        | C25/30   |                     |       |                   | 1,25                                 |                  |       |       |  |  |  |
|                                                                               |                        | C30/37   |                     |       |                   | 1,50                                 |                  |       |       |  |  |  |
|                                                                               | C35/45 1,75            |          |                     |       |                   |                                      |                  |       |       |  |  |  |
| Increase factor for higher                                                    |                        | C40/50   | 2,00                |       |                   |                                      |                  |       |       |  |  |  |
| concrete grades for $N_{Rk,p}$<br>$N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \psi_c$ | Ψс                     | C45/55   | 2,25                |       |                   |                                      |                  |       |       |  |  |  |
| , , , , ,                                                                     |                        | C50/60   | 2,50                |       |                   |                                      |                  |       |       |  |  |  |
|                                                                               |                        | C55/67   | 2,75                |       |                   |                                      |                  |       |       |  |  |  |
|                                                                               |                        | ≥ C60/75 | 3,00                |       |                   |                                      |                  |       |       |  |  |  |
| Partial factor                                                                | γMp <sup>1)</sup>      | [-]      |                     |       |                   | 1,5                                  |                  |       |       |  |  |  |
| Concrete cone failure                                                         |                        | -        |                     |       |                   |                                      |                  |       |       |  |  |  |
| Effective embedment depth                                                     | h <sub>ef</sub>        | [mm]     |                     |       | h <sub>ef</sub> = | = I <sub>tot</sub> — I <sub>th</sub> | — t <sub>h</sub> |       |       |  |  |  |
| Enective embedment depth                                                      | h <sub>ef,min</sub>    | [mm]     | 120                 | 168   | 217               | 256                                  | 285              | 382   | 432   |  |  |  |
| Factor for the influence of the                                               | $k_{\text{ucr},N}$     |          | 12,7                |       |                   |                                      |                  |       |       |  |  |  |
| load transfer mechanism                                                       | k <sub>cr,N</sub>      | [-]      |                     |       |                   | 8,9                                  |                  |       |       |  |  |  |
| Characteristic edge distance                                                  | $C_{cr,N} = C_{cr,sp}$ | [mm]     |                     |       |                   | 1,5 · h <sub>ef</sub>                |                  |       |       |  |  |  |
| Characteristic spacing                                                        | Scr,N = Scr,sp         | [mm]     | 3 · h <sub>ef</sub> |       |                   |                                      |                  |       |       |  |  |  |
|                                                                               | γMc <sup>1)</sup>      | [-]      | 1,5                 |       |                   |                                      |                  |       |       |  |  |  |

#### **Splitting**

A reinforcement has to be present to resist the splitting forces and limits the crack width to  $w_k \le 0.3$  mm. See EN 1992-4:2018, Section 7.2.1.7.

| PFEIFER anchor bolt PGS/G1-K                               |          |
|------------------------------------------------------------|----------|
| Performances Characteristic resistances under tension load | Annex C1 |

<sup>1)</sup> In absence of other national regulations



Table C2: Characteristic resistances under shear load

| Anchor bolt PGS/G1-K                                        |                              |        |                                  | 20   | 24   | 27    | 30    | 36    | 39    |
|-------------------------------------------------------------|------------------------------|--------|----------------------------------|------|------|-------|-------|-------|-------|
| Steel failure under shear load v                            | vithout lever                | arm    |                                  |      |      |       |       |       |       |
| Characteristic resistance                                   | $V^0_{Rk,s}$                 | [kN]   | 43,1                             | 67,3 | 96,9 | 126,3 | 154,2 | 224,6 | 268,3 |
| Factor according to EN 1992-4:2018, sec. 7.2.2.3.1          | <b>k</b> <sub>7</sub>        | [-]    |                                  |      |      | 1,0   |       | •     |       |
| Partial factor                                              | $\gamma$ Ms $^{2)}$          | [-]    |                                  |      |      | 1,5   |       |       |       |
| Steel failure under shear load with lever arm               |                              |        |                                  |      |      |       |       |       |       |
| Characteristic resistance                                   | M <sup>0</sup> Rk,s          | [Nm]   | 183                              | 357  | 616  | 917   | 1236  | 2173  | 2838  |
| Partial factor                                              | γMs <sup>2)</sup>            | [-]    |                                  |      |      | 1,5   |       |       |       |
| Concrete pry-out failure                                    |                              |        |                                  |      |      |       |       |       |       |
| Factor for application acc. to EN 1992-4:2018, sec. 7.2.2.4 | k <sub>8</sub> <sup>1)</sup> | [-]    |                                  |      |      | 2,0   |       |       |       |
| Partial factor                                              | γ <sub>Mcp</sub> 2)          | [-]    |                                  |      |      | 1,5   |       |       |       |
| Concrete edge failure                                       |                              |        |                                  |      |      |       |       |       |       |
| Effective embedment depth                                   | $l_f = h_{ef}$               | []     | $I_f = I_{tot} - I_{th} - I_{h}$ |      |      |       |       |       |       |
| under shear load                                            | $I_{f,min} = h_{ef,min}$     | - [mm] | 120                              | 168  | 217  | 256   | 285   | 382   | 432   |
| Effective outer diameter                                    | $d_{nom} = d$                | [mm]   | 16                               | 20   | 24   | 27    | 30    | 36    | 39    |
| Partial factor                                              | γMc <sup>2)</sup>            | [-]    |                                  |      |      | 1,5   |       |       |       |

 $<sup>^{1)}\,\,</sup>$  If supplementary reinforcement is present, the factor  $k_8$  has to be multiplied by 0,75  $\,$ 

| Combined tension and shear load with additional reinforcement |                        |     |     |  |  |  |
|---------------------------------------------------------------|------------------------|-----|-----|--|--|--|
| Factor according to EN 1992-4:2018, sec. 7.2.3.2              | <b>k</b> <sub>11</sub> | [-] | 2/3 |  |  |  |

| PFEIFER anchor bolt PGS/G1-K                |          |
|---------------------------------------------|----------|
| Performances                                | Annex C2 |
| Characteristic resistances under shear load |          |
| Combined tension and shear load             |          |

<sup>&</sup>lt;sup>2)</sup> In the absence of national regulations



Table C3: Displacement under tension load

| Anchor bolt PGS/G1-K    |                 |      | 16  | 20  | 24  | 27  | 30  | 36  | 39  |
|-------------------------|-----------------|------|-----|-----|-----|-----|-----|-----|-----|
| tension load            | N               | [kN] | 44  | 69  | 99  | 129 | 157 | 229 | 274 |
| short-term displacement | δ Νο            | [mm] | 0,7 | 0,8 | 0,9 | 0,9 | 1,0 | 1,3 | 1,8 |
| long-term displacement  | δ <sub>N∞</sub> | [mm] | 1,4 | 1,6 | 1,8 | 1,8 | 2,0 | 2,6 | 3,6 |

Table C4: Displacement under shear load

| Anchor bolt PGS/G1-K    |      |      | 16  | 20  | 24  | 27  | 30  | 36  | 39  |
|-------------------------|------|------|-----|-----|-----|-----|-----|-----|-----|
| shear load              | ٧    | [kN] | 21  | 32  | 46  | 60  | 73  | 107 | 128 |
| short-term displacement | δ νο | [mm] | 1,0 | 1,0 | 0,9 | 0,9 | 0,9 | 0,8 | 1,0 |
| long-term displacement  | δν∞  | [mm] | 1,5 | 1,5 | 1,4 | 1,4 | 1,4 | 1,2 | 1,5 |

| PFEIFER anchor bolt PGS/G1-K                                 |          |
|--------------------------------------------------------------|----------|
| Performances Displacements under tension and / or shear load | Annex C3 |